
Salt pool owners may balk at the idea of adding chemicals to their pools, but occasionally, the boost on their ECG may need a boost of its own. Granulated dichloro- and trichloro- isocyanurate-based shocks can be used as maintenance products after events such as pool parties, rain storms, and other inclement weather. These shocks provide a quick boost of chlorine without significantly impacting pH balance or calcium hardness levels, which is especially important for salt pools. Regular use of chlorine shocks in salt pools helps prolong the life of the ECG by cutting down on cell usage rates. Much like a traditional chlorine pool, salt pools will occasionally encounter chlorine demand. When the demand outpaces the capabilities of the ECG, which is possible for even a modest chlorine demand, the best way to treat this is by applying chlorine shocks. If a salt pool owner is reluctant to throw granular chlorine shocks into their ‘chemical-free’ pool for maintenance after rain storms or heavy usage, monopersulfate-based products, or chlorine-free oxidizers, are other viable alternatives.
Although chlorine shocks must be used when treating a chlorine demand, monopersulfate products oxidize contaminants and help clear cloudy water, much like chlorine-based shocks. Whether using monopersulfate treatments or chlorine shocks, regular use of supplemental oxidizers ultimately leads to better water quality and extends the life of the ECG.
Steering clear of issues
Many problems can be avoided if proper chlorine residuals are maintained at all times. Supplemental chlorination/oxidation helps a salt system avoid dipping below recommended chlorine residuals. Another way to get the most out of an ECG is by maintaining a stabilizer residual.
Cyanuric acid (CNOH)3, commonly referred to as stabilizer or conditioner, increases the stability of chlorine against the sun’s ultraviolet (UV) rays. Chlorine dissipates quickly, especially during summer months, unless it is protected by some outside source. The chlorine manufactured by an ECG is just as susceptible to UV degradation as chlorine from a tab, stick, or granule. Stabilizer allows a salt pool owner to run their ECG less often or at lower output, thus extending the life of the cell. In addition to using stabilizer, the use of regular scale inhibitors and proper pH maintenance can also prolong the cell life.
The sodium hydroxide ion
Before delving into scale inhibitors, it is now necessary to turn back to the problem of sodium hydroxide. Keep in mind, chlorine manufactured within the ECG has byproducts. For example, while generating hypochlorous acid, they also produce sodium hydroxide, which is a strong base (i.e., it dissociates completely in solution becoming a strong electrolyte), which raises pH and can be harmful to the overall lifespan of not only the ECG cell, but also other equipment and pool surfaces. Water becomes corrosive when pH is too low, and scaling when the pH is too high—especially for areas with hard water. In this case, it is necessary to keep pH within a certain range, typically 7.4 to 7.6, to avoid calcium carbonate (CaCO3) precipitation on surfaces, otherwise known as scale. The high localized concentration of sodium hydroxide at the ECG’s cell plates during chlorine production results in a high pH. Thus, the outcome is a scale prone environment.